MATEMATİK

                       SAYILAR
Geleneksel olarak, sayı birçokluğu belirtmek için kullanılan soyut birimdir. Fakat modern matematikte artık büyüklük belirtmediği halde geleneksel sayıların çeşitli özelliklerine benzer özellikler taşıyan nesnelere de sayı denmesi adettendir.


  • Sayma sayıları 1'den başlayarak sonsuza kadar giderler. Doğal sayılardan farkları "0" sayısını içermemeleridir. Bunun mantığı herhangi bir şeyi (örneğin kalemleri) sayarken 0'dan değil birden başlanmasıdır.


  • Doğal sayılar 0'dan başlayarak sonsuza kadar giden sayılardır. Matematikte doğal sayılar kimesi mathbb N ile gösterilir. mathbb{N} =  { 0, 1, 2, 3, 4, 5, 6, 7, ...  }

Doğal sayılar ismi bu sayıların doğada görüp tanıdığımız sayılar olduğu fikrinden ileri gelmektedir.


  • Tam sayılar eksi sonsuzdan artı sonsuza kadar giderler. Yani "0"ın iki yanından sonsuza kadar uzanırlar. Tam sayılar kümesi mathbb Z ile gösterilir.

mathbb Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, ... }


  • Başında "+" işareti bulunan veya bir şey bulunmayan sayılar pozitif tamsayılar adını alırlar. Sayı ekseninde (sayı doğrusunda) 0'ın sağ yanında yer alırlar. Tüm sayma sayıları pozitif tam sayılardır. Pozitif tamsayılar kümesi mathbb Z^{+} ile gösterilir ve aşağıdaki gibi tanımlıdır:

mathbb Z^{+} = { +1, +2, +3,... }


  • Başında "-" işareti olan tam sayılar negatif tamsayılar adını alırlar. Sayı ekseninde 0'ın sol yanında yer alırlar. Negatif tamsayılar kümesi mathbb Z^{-} ile gösterilir. Cebirde çıkarma işlemi bu sayıların diğer tamsayılarla toplanması olarak ifade edilir.

mathbb Z^{-} = { ..., -3, -2, -1 }


  • 0 negatif veya pozitif bir tam sayı değildir. Bu iki kümeden herhangi birinde yer almaz. Ancak tamsayılar aşağıdaki gibi de tanımlanabilir:

mathbb Z = mathbb Z^{-} cap { 0 } cap mathbb Z^{+}


  • Rasyonel Sayılar: Tam sayılar kullanılarak oluşturulan kesirlere denk gelen büyüklüklere rasyonel sayılar denir. Hisseli hesapları kolaylaştırmak için sayı kavramına dahil edilmişlerdir. Tamsayılar üzerindeki bölme işleminin bir genişlemesidir. Rasyonel sayıların simgesi mathbb Qdur ve mathbb Q = { frac{a}{b} | a,b in mathbb Z and b neq 0 } olarak tanımlanır. a herhangi bir tamsayı olabilir, ama "b" 0 dışındaki tüm tamsayılardır. Kesirli sayılardır ve artı sonsuzdan eksi sonsuza kadar giderler. mathbb Q'nün kardinalitesi alef sıfırdır. Yani eleman sayısı doğal sayıların eleman sayısına eşittir. Tüm tam sayılar aynı zamanda rasyonel sayılar kümesine üyedir. Bunun nedeni b = 1 alınarak a/b formatına uygun hale getirilebilecek olmalarıdır.


  • İrrasyonel sayılar ise a/b şeklinde yazılamayan sayılardır. Q' kümesi ile gösterilirler. Bu kümenin en bilinen üyesi pi sayısıdır.

Örnek:√2, ∏

Hiç bir rasyonel sayı irrasyonel sayılar kümesine dahil değildir. Aynı şekilde hiçbir irrasyonel sayı da rasyonel sayılar kümesine dahil değildir.


  • Gerçel Sayılar: İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşimi gerçel sayıları oluşturur. Bu kümeye 'reel' veya 'gerçek' sayılar da denir. Geometride karşılaşılan bazı büyüklüklerin anlamlandırılabilmesi için Klasik Yunan Dönemi'nde, yaygın inanca göre Pisagor ve öğrencileri tarafından sayı kavramına dahil edilmişlerdir. Anlatılanlara göre Pisagor doğadaki tüm büyüklüklerin rasyonel sayılarla ifade edilebileceğini söylemekteydi. Fakat bulduğu hipotenüs eşitliğinin bir sonucu olarak x2 = 2 gibi bir değerlerle karşılaştı. Uzun yıllar boyu bu tür sayıların uzun kesirlerle ifade edilebileceğini iddia etti ve göstermeye çalıştıysa da, öğrencilerinden birinin bu gibi sayıların kesinlikle kesirli bir biçimde gösterilemeyeceğini ispat etmesiyle ikna olur ama hayatı boyu bunun bir sır gibi gizlenmesi için çalışır ve doğada gerçel sayıların yeri olmadığını söylemeye devam eder.

Gerçel sayılar, katsayıları tamsayılar yada rasyonel sayılar olan polinomlar kümesinin çözümlerini göstermek için kullanılırlar. Bu bakımdan gerçel sayılar kümesi, tamsayı katsayılı polinomlar kümesi mathbb Z[x]in bir cisim genişlemesidir.

Gerçel sayılar kümesi mathbb R harfi ile ifade edilir.


  • Tüm cebirsel denklemleri çözebilmek için reel sayılar tekrar genişletilirse kompleks sayılar kümesi elde edilir. Kompleks sayıların sembolü mathbb Cdir. Rönesans döneminde gerçekleşen cebirsel denklemlerin çözüm metodlarındaki ilerlemelerin bir uzantısı olarak sayı kavramına eklenmişlerdir. Gerçek olmayan sayılar fikri reel sayılar kümesinde karşılığı olmayan -1 sayısının karekökünden gelmektedir. Bu sayı "i" sembolü ile gösterilir ve karesi -1 olarak kabul edilir.



Matematiksel notasyonda yukarıdaki bütün semboller büyük harfle ve kalın olarak yazılır.

                        mathbb{N}submathbb{Z}submathbb{Q}submathbb{R}submathbb{C}

Bu sayılara ek olarak matematikte, kümeler teorisi'nin uğraş alanında olan ordinal sayılar ve kardinal sayılar da sayı kavramının genişletilmesiyle elde edilmişlerdir. Bütünleme tekniğinin değişik bir uygulanmasıyla elde edilen p-sel sayılar ve reel sayılara sonsuz küçükler ve büyüklerin eklenmesiyle elde edilen sürreel sayılar da sayı kavramının parçaları olarak düşünülürler.

Not: Sıfırın doğal sayı kabul edilmediği (akademik) çevreler azımsanmayacak kadar fazladır. Sıfırı dahil etmeyen çevreler doğal sayılar kümesini mathbb{N}_{(0)} sembolü ile gösterirler, sıfırı dahil eden çevrelerse sıfırın dahil olmadığı sayma sayıları kümesini mathbb{N}^{+} ile gösterirler.

P O L İ N O M


Polinomlarla İlgili Temel Kavramlar:

a0, a1, a2, ....an-1, an Î R ve n Î N olmak üzere, P(x) = an xn + an-1 xn-1 + .... + a1 x + a0 şeklindeki ifadelere x değişkenine bağlı, reel katsayılı n’inci dereceden bir polinom denir.

1. an xn, an-1 xn-1, ...., ak xk, ....., ayx, a0 ifadelerinin her birine P(x) polinomunun terimleri denir.
2. an, an-1, ...., ak, ...., ay, a0 reel sayılarına, polinomun terimlerinin katsayıları denir.
3. P(x) polinomunda anxn terimindeki en büyük n sayısına polinomun derecesi denir ve [P(x)]=n şeklinde gösterilir.
4. Derecesi en büyük olan anxn terimindeki an reel sayısına polinomun katsayısı, a0 sabitine ise polinomun sabit terimi denir.
5. P(x) polinomu, terimlerin azalan derecelerine göre,
P(x) = anxn + an-1xn-1 + .... + a1x + a0 şeklinde veya P(x) polinomu terimlerin artan derecelerine göre,
P(x) = a0 + a1x + a2x2 + .... + an-1xn-1 + anxn biçiminde sıralanır.
6. Katsayıları reel sayılardan oluşan polinoma “Reel Katsayılı Polinom” denir ve reel katsayılı polinomlar kümesi R[x] ile gösterilir.

Örnek:
P(x) = 2x5-3/n +xn-2 + 4 ifadesinin bir polinom olması için n Î N kaç olmalıdır?

Çözüm:
5-3/n ifadesinin bir doğal sayı olması gerekir bunun için n yerine verilecek sayının 3’ün bölenleri olmalıdır.
3’ün bölenleri ise n = 1, n = 3, n = -1, n = -3 Ayrıca n-2 ³ 0 den n ³ 2 olması gerekir. O halde bu iki şartı da gerçekleyen n = 3 sayısıdır. Buna göre, P(x) polinomu
P(x) = 2x5-3/3 + x3-2 + 4
P(x) = 2x4 + x + 4 dür.
 
ÇOK DEĞİŞKENLİ POLİNOM


P(x, y) = x3y2 – 2x4 y3 + xy + x – y + 1 şeklindeki polinomlara x ve y değişkenlerine bağlı reel katsayılı bir polinom denir.

Bu polinomların derecesi x ve y’nin dereceler toplamının en büyüğüdür.
der P(x, y) = der P(x) + der P(y) dir.

Yukarıdaki iki değişkenli polinomun derecesi ikinci terimdeki x ve y’nin dereceler toplamıdır.
Der P(x, y) = 4 + 3 = 7 dir.

Örnek
P(x, y) = 2x2y4 – 3x3y5 + x2y3-y5 + 1 polinomunun derecesi kaçtır?

Çözüm:
2x2y4 teriminin derecesi 2 + 4 = 6
-3x3y5 teriminin derecesi 3 + 5 =8
x2y3 teriminin derecesi 2 + 3 = 5
-y5 teriminin derecesi 5
Yukarıda belirtilen en büyük dereceli terimin derecesi P(x, y) polinomunun derecesidir. O halde, der P(x, y) = 8 dir.

Örnek
P(x) = x3 – 3x2 + 4x – 2 ise
P(2)= ?, P(0) = ?, P(1) = ?

Çözüm:
P(2) = 23 – 3.22 + 4.2 – 2
= 8 – 12 + 8 – 2 = 2 bulunur.
P(0) = 03 – 3.02 + 4.0 – 2 = - 2 bulunur.
P(1) = 13 – 3.12 + 4.1 – 2
= 1 – 3 + 4 – 2 = 0 bulunur.
 
Digg this Post!Add Post to del.icio.usBookmark Post in TechnoratiFurl this Post!Stumble this Post!Google Bookmark this Post!Yahoo Bookmark this Post!Live Bookmark this Post!
Alıntı ile Cevapla

 
Eski 03-15-2007, 19:29   #3 (permalink)
CaNDy'S
 
Mesajlar: n/a
 
Tanımlı



SIFIR POLİNOMU


P(X) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0 polinomunda,
an = an-1 = ... = a1 = a0 = 0 ise; P(x) = 0xn + 0xn-1 + ... + 0x2 + 0x + 0 polinomuna, sıfır polinomu denir.

Sıfır polinomu, 0 ile gösterilir. Sıfır polinomunun derecesi belirsizdir.

Örnek
P(x) = (m + 3)x2 + (n – 5) x + 1 polinomunun sıfır polinomu olması için; m, n ve t reel sayılarını belirtelim.

Çözüm

P(x) polinomunun sıfır polinomu olması için;
m + 3 = 0, n – 5 = 0, t = 0 ;
m = -3, n = 5, t = 0 olmalıdır.


SABİT POLİNOM


P(x) = anxn + an-1xn-1 + ... + a1x + a0 polinomunda, an = an-1 = ... = a1 = 0 ve a0 ¹ 0 ise; P(x) polinomuna, sabit polinom denir.

0xn + 0xn-1 + ... + 0x + a0 sabit polinomu, a0 ile gösterilir.
x0 = 1 olduğundan; a0 sabit polinomu, a0x0 biçiminde yazılabilir. Buna göre, sabit polinomun derecesi 0 dır.

Örnek P(x) = (a – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a ve b sayılarını belirtelim.

Çözüm

P(x) = A – 4)x2 + bx + 7 polinomunun sabit polinom olması için, a – 4 = 0 ve b = 0 olmalıdır. Buna göre, a = 4 ve b = 0 dır.
 
İKİ POLİNOM EŞİTLİĞİ


Dereceleri aynı ve aynı dereceli terimlerinin kat sayıları eşit olan iki polinoma, eşit polinomlar denir.


n. dereceden,
A(x) = anxn + an-1xn-1 + ... + a2x2 + a1x + a0 ve
B(x) = bnxn + bn-1xn-1 + ... + b2x2 + b1x + b0 polinomları için;
A(x) = B(x) Û an = bn, an-1 = bn-1, ... , a2 = b2, a1, a0 = b0 dır.

Örnek
A(x) = 5x3 + (a + 1x2 + d,
B(x) = (b - 1)x3 – 3x2 – (2c – 3) x + polinomları veriliyor. A(x) = B(x) olması için; a, b, c ve d yi bulalım.

Çözüm

A(x) = 5x3 + (a + 1)x2 + d = 5x3 + (a + 1)x2 + 0x + d,
B(x) = (b – 1)x3 - 3x2 – (2c – 3)x + olduğundan;
A(x) = B(x) Þ 5 = b – 1, a + 1 = -3, 0 = -(2c – 3), d =
b = 6, a = -4, c = , d = dir.


POLİNOM FONKSİYONLARI


P : R ® R
x ® P(x) = anxn + an-1xn-1 + ... + a1x + a0 fonksiyonuna polinom fonksiyonu denir.

P : R ® R
x ® P(x) = 5x3 + 2x2 – 3x + 1 ifadesi polinom fonksiyonudur.

Örnek
P(x) = x2 + 2x + 1 polinomu için P(X-1) polinomunu bulunuz.

Çözüm

P(x-1)’i bulmak için P(x)’de x yerine x-1’i yazalım.
P(x-1) = (x-1)2 + 2(x-1) + 1
= x2 – 2x + 1 + 2x – 2 + 1 = x2
P(x-1) = x2 olarak bulunur.

II: Yol:
Önce P(x) = x2 + 2x + 1 = (x+1)2 olarak yazıp x yerine x-1’i yazalım.
P(x-1) = (x-1+1)2 = x2 bulunur.

Örnek
P(x) polinomu için,
P(x+2) = x3 – 2x2 + 4 eşitliği veriliyor. Buna göre P(x) polinomunu bulunuz.

Çözüm

P(x+2) = x3 - 2x2 + 4 eşitliğinde
H = x + 2 Þ h –2 = x’i yerine yazalım.
P(h – 2 + 2) = (h – 2)3 – 2(h – 2)2 + 4
P(h) = (h – 2)3 – 2(h – 2)2 + 4
P(x) = (x – 2)3 – 2(x – 2)2 + 4 bulunur.


POLİNOM KATSAYILAR TOPLAMI


P(x) = anxn + an-1xn-1 + ... + a1x + a0 polinomunda x = 1 yerine yazılırsa
P(1) = an + an-1 + ... + a1 + a0 katsayılar toplamı bulunur.
P(x) polinomunda x = 0 yerine yazılırsa sabit terimi bulunur.

Örnek
P(x) = 2x4 + 5x3 – 3x2 + x – 1 polinomunun katsayıları toplamını bulunuz.

Çözüm

P(x) de x = 1 ‘i yerine yazalım.
P(1) = 2.14 + 5.13 – 3.12 + 1-1
= 2 + 5 – 3 + 1 – 1 = 4 bulunur.

POLINOMLARDA İŞLEMLER


Polinomlarda Toplama İşlemi

A(x) = a4x4 + a3x3 + a2x2 + a1x + a0
B(x) = b3x3 + b2x2 + b1x + b0
Polinomları verilsin, bu iki polinomu toplarken aynı dereceli terimler kendi arasında toplanarak iki polinomun toplamı elde edilir.
A(x) + B(x) = a4 x4 + ( a3 + b3 ) x3 + ( a2 + b2 ) x2 + ( a1 + b1 ) x + a0 + b0

Örnek
P(x) = x3 + 2x2 – 3x + 1, Q(x) = 3x2 + Ö3 x + 4 polinomlarının toplamı olan polinomu bulunuz.

Çözüm

P(x) + Q(x) = x3 + (2+3) x2 + (-3) + Ö3) x + 1 + 4
= x3 + 5x2 + (Ö3-3) x + 5 dir.

Buna göre iki polinomun toplamı yine bir başka polinom olduğundan polinomlar toplama işlemine göre kapalıdır.

1. Polinomlar kümesi, toplama işlemine göre kapalıdır.
2. Polinomlar kümesinde toplama işleminin değişme özelliği vardır.
3. Polinomlar kümesinde toplama işleminin birleşme özelliği vardır.
4. Sıfır polinomu, polinomlar kümesinde toplama işlemine göre birim elemanıdır.
5. Her polinomun, toplama işlemine göre tersi vardır.

Logaritma

Logaritma: log10 (sarı),ln (kırmızı) ve log½ (mavi)
Logaritma: log10 (sarı),
ln (kırmızı) ve log½ (mavi)

Logaritma (Yunanca: λόγος (logos) = anlayış, ἀριθμός (aritmos) = sayı), 17. yüzyılın başında hesapları hızlandırmak için yapılan bir buluş. 300 yıldan daha uzun bir zaman, temel bir hesap metodu olmuştur. 19. yüzyılda masa hesap makinalarının doğuşu ve yirminci yüzyılda elektronik hesap makinalarının ortaya çıkışı, logaritmaya olan ihtiyacı azaltmıştır. Ancak logaritmik fonksiyonların teorik ve uygulamalı matematikte özel bir yeri vardır.

Logaritma, birbirinden habersiz çalışan iki kişi tarafından keşfedilmiştir. Bunlar; 1614'te İskoçyalı John Napier ve 1620'de İsviçreli Joost Bürgi'dir.

Logaritma üzerinde önemli çalışmaları olan bir Türk bilgini de Gelenbevi İsmail Efendidir. Kendisi büyük bir matematikçi olup, mantıkla da uğraşmıştır. 1730-1790 yıllarında yaşayan bu büyük alimin Logaritma Risalesi isimli çok açık, anlaşılır yazılmış bir eseri mevcuttur.

Logaritmayı açıklamak için 2·2·2= 8 ifadesine bakalım. Bu 2³ = 8 olarak kısaca yazılabilir. Bu örnekte 3, 8'in 2 tabanına göre logaritması denir.Buradan çıkan sonuç log28=3 'dur. Başka bir örnek, 2·2·2·2 = 16 ve 24= 16 yazılırsa, burada 4, 16'nın 2 tabanına göre logaritmasıdır.Yani log216=4 'tür. Genel olarak bx= N ifadesinde N'nin b tabanına göre logaritması, x'tir. Her ne kadar her pozitif sayı taban olarak kullanılırsa da genel olarak logaritma 10 ve e (yaklaşık, 2,718281828) tabanına göre hesaplanır.

 

Tabii logaritmaEğer taban olarak yaklaşık 2,718281828 olan e sayısı alınırsa, bu logaritma tabii logaritma veya keşfeden John Napier'e izafeten Napier logaritması olarak da isimlendirilir. logeN yerine ln N ifadesi kullanılır. Mesela, ln 2= 0,6932'dir. Tabii logaritma genel olarak, ilmi kanunların ifadesinde sık sık ortaya çıkar.

Adi ve tabii logaritmalar birbirleri ile alakalı olup, tabii logaritma, adi logaritmaya 0,4343 sayısı ile çarparak çevrilebilir.

Adi ve tabii logaritmaların dışında herhangi pozitif bir reel sayı tabanına göre de logaritma kullanılır. Ancak negatif sayıların hiçbir tabana göre logaritmasının olmayacağı açıktır.

Denklemler

log(xcdot y) = log(x) + log(y)
 log_a bigg(frac{x}{y} bigg) = log_a (x) - log_a (y)
log_a left( x^r right) = r cdot log_a (x)

log_a !left( sqrt[n]{x} right)
= log_a !left( x^frac{1}{n} right)
= frac{1}{n}log_a(x)
log_b(r) = frac{log_a(r)}{log_a(b)}

Geometri

Calabi-Yau manifold
Calabi-Yau manifold

Geometri, matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır (Eski adı: Hendese). Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.

Geometri, arazi ölçümü sözcüklerinden türetilmiştir. Herodot (i. Ö. 450), geometrinin başlangıç yerinin Mısır olduğunu kabul eder. Ona göre geometri kavramı Mısır kö­kenlidir. Sözcüğün kullanımı da Eflatun, Aristo ve Thales’e kadar gider. Yalnız Öklit geometri sözcüğü yerine Elements sözcüğünü yeğlemiştir. Elements sözcüğünün Yunanca karşılığı stoicheia sözcüğüdür.

Bir kümenin üzerine konan ve kümenin öğelerini birbirleriyle ilişkilendiren bir uygun yapı, geometri yapılmasını olanaklı kılar. Bir düzlemin üzerine doğal olarak konacak ve sezgisel uzaklık duygusunu gözetecek "lise geometrisi"nin adı Öklit geometrisidir. Bu geometrinin tarihsel olarak ilginç ve önemli bir özelliği paralellik belitidir. Bu beliti sağlamayan ama geri kalan tüm belitleri sağlayan geometrilere Öklit dışı geometriler denir. Bunlara örnek olarak Hiperbolik geometri ya da küresel geometri verilebilir.

Günümüzde kullanılan doğru, yay, ışın, açı ortay, kenar ortay gibi birçok temel geometri teriminin Türkçe'leri Mustafa Kemal Atatürk'ün Geometri adlı eserinde yazılan eserde önerdiği terimlerden yararlanılarak kullanılmaya başlanmıştır.

Konu başlıkları

[gizle]

Tarih

İkizkenar üçgen
İkizkenar üçgen

İlk geometrilerin tümü, kendi doğası nedeniyle sezgiseldir. Bunlar daha çok ilk insanların çevresinde görünen doğal şekillerdir. Bu geometriler daha çok görsel tür­dedir. İkinci olarak şekillerin ölçülmesi aşaması gelir. Dörtgenlerin ve üçgenlerin ölçül­mesi ilk kez Mısır’da Ahmes’in (İ. Ö. 1550) papirüsünde görülür.

Bu papirüs M.Ö. 1580 talihinden önce yazılmıştır, b tabanlı ve h yükseklikli ikiz kenar üçgenin alanının bh/2 olduğu verilmiştir.

frac{h.b}{2}=A(ABC)

Yine aynı papirüste d çaplı bir dairenin alanının (d-d/9)2 yazımına eşdeğer olduğu yazılmıştır. Bu yazımlara göre pi sayısı yaklaşık olarak 3.1605 dolay­larındadır. Bu formül geometrik şekilden yaklaşık olarak elde edilmiştir.

 A= pi r^2

Bu formülün Babillilera ait tabletlerde de olduğu söylenmektedir. Çin’in yerli geometrisi de gelişkin örnekler içerir. İ. Ö. 1100 yıllarında yazıldığı sanılan Çinlilerin ünlü Nine Sections (Do­kuz Bölüm) kitabında dik açılı üçgen ve ispatsız olarak Pisagor teoremi vardır. Daha sonraki Çin geometrilerinde ölçümleri içeren çok zeki buluşlar vardır. Yine geometrik görünümle Pisagor teoreminin ispatı yapılmıştır. Bu geometrik şekille verilen kitabın İ. Ö. 2000 yıllarında yazıldığı sanılıyor.

Hintlilerin yerli geometrilerinde de matematiksel bir ispat yoktur. Daha çok görsel ve deneysel ölçülere dayanan kuralları vardır. Bunlar da o kadar ileri bir geometri oluş­turmaz. Bin yıllık bir süre boyunca kullanılan Yunan geometrisi ise daha çok görseldir. Eski Roma geometrisi daha çok kullanım alanlarına yöneliktir.

Arazi ölçümleri, şehir yerleşimleri, su kanalları ve savaş sanatında geometriyi Romalılar iyi kullanmışlardır. Fakat bunlar görsel geometriyi fazla kullanmamışlardır. Zaten görsel geometrinin kökeni Yunanistan’da başlamıştır. Bu çalışmalar ilk kez Thales'in (İ. Ö. 600) yapıtlarında görülür. Thales bu teoremleri Mezopotamya’da ve Mısır’da kullandıklarını görür. Altı teoremle önderlik eder ve bu teoremlerin ispatlarını yapar. Matematikte ispat yapma Thales’le başlamıştır. Thales’in bu ispatları zamanla kaybol­muş ama, ondan sonra bunları öğrenenler gelecek kuşaklara aktarmıştır. Bin yıl süren bu görsel Yunan geometrisi zamanla gerilemiş ve yeni bir çalışma getirilmemiştir.

Batı Avrupa’nın uyanmasından önceki yüzyıla kadar Yunan kültürünü ve geomet­risini tam olarak müslümanlar anlamıştır. Yunan klasiklerini, geometrilerini, fen bilimlerini ve felsefelerini Arapça’ya çevirmişlerdir. Fakat ne Öklit’in ne de Apollonius’un çalış­malarına gerçek ve gözle görünür bir katkı ve ekler yapmamışlardır. Okullaşma olma­dığı için gelecek gençlere bu çeviriler öğretilmemiş, bu kitaplar sadece neredeyse bir süs olarak sarayda kalmıştır. Yaptıkları hizmet, kaybolmaya yüz tutmuş Yunan klasiklerini, matematiksel üretimini ve düşüncelerini Arapça çevirileriyle Avrupa’ya iletmişlerdir.

Kadın Geometri öğretiyor.Orta çağın başlangıcında Öklit'in Unsurları'nın (Elements) çevirisinin canlandırılması, (yaklaşık.1310)
Kadın Geometri öğretiyor.Orta çağın başlangıcında Öklit'in Unsurları'nın (Elements) çevirisinin canlandırılması, (yaklaşık.1310)

Avrupa’daki karanlık çağda biri Boethius’un (510) diğeri de Öklit’in (İ.Ö. 300) Sements isimli kitabı vardı. Bunlardan sonra Gerbert’in (1000) ve Fibonacci’nin (1202) geometrileri sayılabilir, ama bu geometriler İskenderiye geometrilerinden ileri bir dü­zeyde değildi. Avrupa’nın geometrisine büyük katkı 1482 yılında ilk baskısı yapılan Öklit geometrisi oldu. Zaten çok iyi düzenlenmiş ve yazılmış olan bu geometriler Avrupa’ya hızla yayıldı ve her tarafında bilinir oldu. Öklit’in geometrisinin ardından yavaş yavaş geometri ürünleri ortaya çıkmaya başladı. On yedinci yüzyılın başlarında analitik geo­metri ve 1639 yılında da Desargues’ın (1593-1662) izdüşüm geometrisi basıldı. Ana­litik geometri Descartes (1596 -1650) ve Fermat (1601 -1665) tarafından aynı dönem­lerde yapıldı. Fermat yaptığı çalışmaları yayınlamadığı için analitik geometrinin bulun­ması onuru Descartes’e verildi. Analitik geometri kısaca geometri ile cebir arasındaki ilişkidir diye söyleyebiliriz. Geometri ile cebir arasındaki ilişkiyi ilk kez Descartes çıkar­dığı için büyük bir matematikçi olmuştur. Desargues’ın izdüşüm geometrisi matema­tikçilerin çok dikkatini çekmiş ve on dokuzuncu yüzyılda çıkacak olan geometricilere coşku ve esin kaynağı olmuştur.

Analitik geometri bulunduktan sonra Apollonius’un (İ. Ö. 262-190) konikleri sen­tetik ve analitik olarak yeniden incelenmiştir. Sadece konikler değil, eski Yunan geo­metrisi yeniden analitik olarak gözden geçirilmiştir. Sentetik geometrinin tüm problemleri bir kez de analitik olarak kanıtlanmıştır.

Öklit Geometrisi

Öklit geometrisinin temeli nokta iie başlar. Pisagorcular noktayı küçük bir zerre olarak tanımlamışlardır. Bu tanım aslında Aristo’dan (İ. Ö. 340) alınmıştır. Eflatun (i. ö. 380), noktayı bir doğrunun başlangıcı olarak tanımlamıştır. Bu kez doğru nedir sorusu karşımıza çıkmaktadır. Altıncı yüzyılda yaşayan Simplicus, uzunluğun başlangıcı ve buradan doğru uzar. Ayrıca bölünemez diye noktayı tanımlamıştır. Hiçbir parçası ol­mayan ize nokta denir tanımını Öklit (İ.Ö. 300) yapmıştır. Heron (50) da aynı sözcü­ğü kullanmış, noktayı boyutsuz bir limit veya doğrunun bir limitidir şeklinde söylemiştir. Capella (460), hiçbir parçası olmayan şeye nokta denir demiştir. Modern yazarlar nok­tayı sanki tanımlı bir limit kavramıdır diye almışlardır. Dönemimizde de, nokta kabul edilen bir kavramdır. Noktayı kabul ettikten sonra işler kolaylaşır.

Eflatuncular, ensiz uzunluğa doğru demişlerdir. Aynı tanımı Öklit de almıştır. Yani noktanın hareketinden doğru elde edilir. Doğrunun hareketiyle yüzey ve yüzeyin hareket ile de hacim oluşturulur. Bundan sonra doğru, yarı doğru, doğru parçası, yü­zey, düzlemsel yüzey, açı, çember, daire, çap, yarıçap, paralel doğrular ve dik doğrular gibi bir dizi geometrik tanımlar getirilmiştir.

İspatlanamayan gerçeklere aksiyom ismi verilir. Açıkça görülen fakat ispatlana-mayan gerçeklere de postülat denir. Euciit’in geometrisi tanım, aksiyom ve postülatlar üzerine kurulmuştur. Zaten matematik aksiyomatik bir düşüncedir. Belli şeyleri kabul ederseniz: onun üzerine matematiği kurarsınız.

Öklit'in aksiyomları

Şimdi, Öklit’in beş aksiyomunu yazalım; 1. Aynı şeye eşit olan şeyler eşittir,2. Eşit şeylere eşit çokluklar eklenirse sonuç yine eşittir,3. Eşit şeylerden eşit çokluklar çıkarılırsa sonuç yine eşittir,4. Birbirleriyle çakışan şeyler birbirine eşittir,5. Bütün, parçalarından büyüktür.

Şimdi de postülatlara bazı örnekler verelim.

1. iki noktadan bir doğru geçer,

2. iki nokta arasındaki sürekli doğru sonludur,

3. Bir noktadan eşit uzaklıktaki noktaların geometrik yeri bir çemberdir,

4. Tüm dik açılar birbirine eşittir,

5. İki doğru bir doğru ile kesildiğinde kesenin bir tarafında oluşan iki iç açının toplamı 180 dereceden küçükse, bu iki doğru bu 180 dereceden küçük açıların bulun­duğu tarafta kesişirler.

Bu postülatlar daha sonraki Yunanlı bilginler tarafından çok İncelendi ve geliştirildi. Sidonlu Zeno (İ. Ö. I. yüzyıl) farklı iki doğrunun ortak bir doğru parçası yoktur. Dördüncü ve beşinci postulatların birer teorem olduğu yine ileri sürülmüştür. Proclus (460) dör­düncü postulatı bir teorem olarak almış, ispatlamaya çalışmış fakat başaramamıştır. Bu postülatın tersinin doğru olmasının gerekmediğini de ileri sürmüş ve bunu ispatla­mıştır. Saccheri (1773) bu postülatı farklı bir yolla ispatlamıştır.

Beşinci postülat

Matematikte en çok tartışılan ve önemli olan beşinci postülattır. Bu postülat daha çok paralellik postülatı olarak bilinir. Yani, bir doğruya dışındaki bir noktadan bu doğruya yalnız bir tek paralel çizilir ifadesi beşinci postülata eşdeğerdir. Bu nedenle beşinci postülat daha çok bu ifadeyle tanınır. Tarih boyunca bu postülatı ispatlamak için giri­şimlerde bulunulmuştur. Bunlardan önemli girişimler Ptolemy (85 - 165), Nasirettin elTusi (1200), VVallis (1660), Saccheri (1733), Lambert (1766), Legendre (1794) ve diğerleri tarafından yapılmıştır.

Playfair postülatı 
Proclus’un postulatına bir alternatif Playfair (1795) getirilmiştir. Playfair’in dünyaya tanıttığı postulat da şöyledir. Bir doğruya dışındaki bir noktadan yalnız bir tek paralel çizilir. Ya da kesişen iki doğru bir doğruya ve aynı doğruya paralel olamazlar. Aslında Playfair’in postulatı pratik olarak 1795 tarihinden önce biliniyordu. Çünkü, bu postülatı Joseph Fenn, Öklit’in Elemenfs isimli kitabını 1769 yılında Dublin’de yayınladığında »azmıştı. O da, iki paralel doğrudan birini kesen doğru diğerini de keser şeklindeydi. Proclus (460) tarafından verilen bu postülat VVilliam Ludlam (1785) tarafından da ya­zılmıştı. Zaten bu ileri sürülen postülatların tümü Öklit’in Elements isimli kitabının birinci cildinin otuz birinci sayfasında vardı. Yukarıdaki yazarların sunduğu postülatlar Öklit’in beşinci postulatının eşdeğer söylenişleriydi.

İlkel geometrinin düzlemsel geometri problemlerinin temelleri Öklit’in Elements isimli kitabında vardı. İkiz kenar bir üçgenin taban açıları da birbirlerine eşittir. Öklit’in birinci kitabının beşini önermesi olarak geçen bu teorem, ilk kez Thales (İ. Ö. 600) tara­fından ispatlandığını Proclus (460) söylemektedir. Yine aynı teoremin farklı bir yoldan Pappus (300) tarafından ispatlandığını Proclus söylemektedir. Bu teorem Ortaçağ boyunca matematikçilerin dikkatini çekmiş. Roger Bacon (1250) da bu teoreme değin­miştir.

 

Thales’in benzerlikleri

Benzer üçgenler kavramı ]

Thales (M.Ö. 600) ve onun öncesinden başlamış, Eude-mus’la (M.Ö. 335) devam etmiştir. Benzer üçgenler Thales tarafından yanına varılamayan uzaklıkların ölçülmesinde kullanılmıştır. Bugün orta dereceli okullarda okutulan Thales teoremleri çok sevilen kurallardır. Yalnız, yanına varılamayan uzaklıkları ölçen ilkel bazı araçlar Babilliler tarafından yapılmıştır. Öklit,, Babillilerin bu aletinin karışık bir şekil olduğunu yazar. Bir şekle uydurup ispatını da veremez. Bu şeklin ispatını da­ha sonraki yüzyıllarda el Nairizi yazarı bilinmeyen birinin açıklamalarına dayandırarak verir Bunun en iyi ürünlerini de Napolyon’un (1769 -1821) matematikçileri almıştır.

Thales’in benzerliklerini en iyi ve pratik olarak uygulamalarını Rönesans yazarları kullanır. Bunların en güzel şekillerini Belli’nin (1570), 1569 yılında yayınladığı çalışma­sında görebiliriz.

Sevdiklerimize onları sonsuza kadar seveceğimizi söyleriz, hatta buna biz de inanırız. Oysa sonsuz o kadar uzak ki..- Sonsuzda ne biz varız, ne Dünya var, ne Gü­neş var, ne de Samanyolu var. Tüm kumsallardaki tüm kum tanelerini sayabiliriz. Ya da evrenin bilinen ölçüleri içinde kaç tane molekül olduğunu bile hesaplayabiliriz. Bu değerlerle düşünmeye başladığımız zaman içinde yaşadığımız zaman diliminin kıyme­tini daha iyi anlamaya başlarız. Onun ne kadar kısa, ne kadar değerli olduğunu görü­rüz. Matematikçilerin hayatı seven ama ciddiye almayan yaklaşımlarında bu sonsuz kavramıyla haşır neşir olmalarının bir etkisi var mıdır dersiniz?

Peki, bu sayma işlemlerinde kullandığımız sayıların kendilerini saymaya kalkarsak? Kaç tane tam sayı vardır dersiniz.? Elbette sonsuz tane. Bu sonsuz kavramını kullanarak ondan daha büyük sonsuz kavramları da düşünebiliriz, Örneğin: bir doğru üzerindeki herhangi iki farklı nokta arasındaki nokta sayısı daha büyük bir sonsuz değere karşılık gelir. İnsanoğlu sonsuz kavramına ancak kendini tekrar eden ve döngüye giren durum­larla yaklaşabiliyor. Sonsuz denince akla bu kavramı sanatta en iyi biçimde yakalayan ünlü grafik sanatçısı Esher geliyor. Birbirini çizen eller, birbirine dönüşen varlıklar ve içine girdiğiniz zaman sonsuza kadar çıkamayacağınız resimler.

Geometri sözcüğü Dünya’nın ölçümü anlamına gelir. Bu bilim dalı başlangıçta düzlemdeki ve uzaydakiNBKJHAWQDBHSAkarşın, geometri deneysel yöntemlerin kullanımını çok erken bıraktı. İspat öne çıktı. Bunun tersine, şekilleri gerçek nesnelerin ideal biçimine indir­gemeye çalıştı. Parçaları olmayan nokta, bütün noktalarda kendine benzeyen doğru ve yüzeyler birer aksiyom olarak alındı. Öte yandan geometri, gözlemi de ölçmeyi de kullanmayan postülatlar ve sonuçlarla işleyen bir kanıtlama biçimine başvurdu. Babilliler ve Mısırlılarda önceleri ispat yoktu ve daha çok deneme yöntemi kullanılıyordu. Ama Thales (İ. Ö. 626 - 545) ve Öklites’le (İ. Ö. 300) gelen geometri tümüyle ispatlıydı.

Descartes ve düzlem geometrisi

Cebirsel yöntemlerin etkinliğini ve gücünü gösteren Descartes (1596 -1650), her tür düzlem geometri problemini bir denklemler dizisine indirgedi. Yani geometriyi aritmetikleştirdi. Bu dönemden sonra, sayısal koordinatlara dayanan bir gösterim biçimi kullanıldı ve şekilleri fonksiyonlar olarak ele aldı. Analitik geometri adı verilen bu yön­tem, büyük bir ilerleme kaydetti. On sekizinci yüzyılda üç boyutlu uzay ve yüzeyler kuramını da kapsamına aldı. Bununla birlikte bu yaklaşım, yanlış olarak birleşmiş geometri de denilen arı geometrideki şekillerin sezgisel anlamından uzaklaştı.

On dokuzuncu yüzyıl boyunca, Rönesans’tan beri sanatçılar tarafından araştırılan gösterim tekniklerine, izdüşümsel geometri sistemleştirilerek matematiksel bir içerik kazandırdı. Böylece, bireşimsel yaklaşımın geri dönüşüne tanık olundu. Çünkü, Fran­sız matematikçi Poncelet (1788 -1867) ve Chasles (1793 -1880), şekilleri, bazı özel­liklerini koruyarak değiştiren dönüşümlerin önemini gösterdiler.

Klasik geometri sadece pergel ve cetvel yapımı üzerinedir. Ancak daha sonraları bu yapımın soyut cebirle olan bağlantısı anlaşılınca geometri ile cebir arasında sınırlar kaybolmaya başlamıştır. Geometrideki kilometre taşları şöyle sıralanabilir. İsa’dan önce Thales, Öklites. Apollonios, Archimedes ilk akla gelenlerdendir. Daha sonra Descartes (1637), Desar-ques (1639), Lazer Carnot (1803), Jean Victor Poncelet (1822), Janos Bolyai (1823), Mİchei Chasles (1837), N. Lobaçevsky (1840), Bernard Riemann (1867), C. Fe1ix Klein (1872), David Hilbert (1899) ve Albert Einstein (1921) olarak sayılabilir

 

Geometri'nin Kullanım Alanları Geometri günlük yaşamın hemen her alanında gereklidir. Geometride uzunluk, alan, yüzey, açı gibi kavramlar bazı nicelikleri belirlemede kullanılır. Geometri’nin en çok iç içe olduğu dallar; cebir ve trigonometri, mimarlık, mühendislikler (Yol, köprü, yapı, makine, gemi ve uçak yapımı; maden, su ve elektrik işleri gibi bayındırlık ve zanaatla ilgili teknik çalışmalar, vb.) , endüstiryel alanlar, simülasyonlar, bilgisayar programları ve grafikleri, sibertenik, tasarım, sanat vb.dir Geometrinin kullanılmadığı meslek ya da alan yok gibidir desek yerinde olur.

Geometri ve Sanat
Geometri ve sanat birbirleri ile bağlantılı olup birbirlerini destekleyen iki bilimdir. Sanatta geometrinin kullanımı yüzyıllardan beri süregelmiştir.Özellikle mimari yapılarda geometriden faydalanılmıştır. En bilindik olarak da Mimar Sinan eserlerinde geometriden oldukça yararlanmış ve muhteşem eserler vermiştir. Eserlerinde geometriyi çok iyi kullanmış olması eserlerinin sağlam yapılar olmasına büyük bir katkı sağlamıstır.

Sanat eserlerinin geometrik olması onlara estetik değerler kazandırmıştır. Ünlü ressam Leonardo da Vinci’nin resimde vücut oranları üzerine yaptığı çalışmalar, çizdiği eskizler bulunmaktadır.Bu orana Altın Oran denmektedir.''İtalik yazı

Geometri ve Tasarım

Gazete, dergi ve amblem tasarımları günümüzde profesyonel kadrolar tarafından gerçekleştirilen önemli bir iştir. Basın-yayın organları ve firmalar bu gerçeğin bilincinde olduklarından kalabalık kadroları bu işte görevlendirmişlerdir.

Tasarım başlı başına bir sanat sayılır. Tasarımcılıkta geometri kısmen işe yarar. Daha çok oran ve paraleliklerin önem kazandığı logo ve amblem tasarımında kullanılır.

Tabiattaki geometrik şekilleri fark eden insanlar geometriyi hayatlarında uygulamışlardır.Zamanla logo ve amblemler ortaya çıkınca insanlar logo ve amblemlere de geometrik anlamlar yüklemişlerdir. Bunun sonucunda da umursamadığımız en basit bir amblem dahi geometrik bir eser haline gelmiştir. Örneğin; her gün yollarda rahatlıkla görebileceğimiz, Mercedes, Mitsubishi ve Renault gibi ünlü araba markalarının ablemleri; iyinin içindeki kötü, kötünün içindeki iyi sembolü olarak bilinen Yin-Yang sembolü ve bugün İsrail Devleti'nin kullandığı asıl ismi Davut Yıldızı olan bayrak geometrik birer eser sayılabilir. geometri bir resim müzik sanatı değildir aslında geometri matematik bile değildir ama geometri matematiğin içinde yer aldığı için öyle zanedilir.yukarıdaki gibi matematiği tek görmeliyiz geometri ayrı bir derstir.lütfen bunu karıştırmıyalım...bu benim fikrim..matematik önemli de olsa geometri daha zaka işter.

Geometri ve Perspektif Resimlerde uygulanan perspektif izdüşümsel geometrinin somut uygulamalarından biridir.

Perspektif üzerine ilk kitabı 1453’te Leon Battista Alberti kaleme aldı; Açık pencere gibi duran bir dikdörtgen çiziyorum ve buradan resmedilecek nesneye bakıyorum

Burada tek bir gözün gördüğünü tabloya yansıtmak, daha matematiksel bir anlatımla, tablo düzleminde, kişinin bir gözünün merkez alan bir izdüşümle görüntüyü oluşturmak söz konusuydu. Uzaklıkları ve açıları büyük değişimlere uğratan bu gösterim biçiminden kaynaklanmış teknik problemleri çözmek için birçok kitap yazıldı, birçok alet geliştirildi. 17.yy’da Desargues, perspektif tekniğini matematiksel olarak açıklayan ilk kişi oldu.

Geometri ve Simülasyon

Çağımızda yaygın olarak kullanılan simulasyon teknolojisi, gerçek olmayan bir nesnenin, durumun veya resmin; gelişmiş bilgisayar teknikleriyle taklit edilerek gerçeğine benzetilmesidir.

Üretilecek olan ürünün önceden bilgisayar ortamında modellenmesi konusunda büyük bir gelişme ortaya koyan bu teknolojinin birçok sanayi dalında sıklıkla kullanılmaktadır.

Geometri ve Haritacılık 
Yer epilsoidini harita düzlemi üzerinde matematiksel olarak gösterme yöntemine “Harita İzdüşümü” denir. Bu yöntem; uygun izdüşümler, eşdeğer izdüşümler ve perspektif izdüşümler gibi sistemleri kapsar. Genellikle izdüşüm sistemi harita çizecek olan kişinin amacına göre seçilir. Haritacalık alanında genel olarak Küresel Geometri kullanılmaktadır.

Geometri ve Mimari

Çağdaş mimarîde düzenli yüzeyler, özellikle betonun kullanımı sonucunda büyük bir başarı kazandı. Çünkü bu yüzeylerin doğrularla oluşturulması beton kalıplarının yapımını kolaylaştırmaktaydı.

Tokyo Olimpiyat Stadyumu'nda "Hiperbolik Parabolit" ; Münih’deki Olimpiyat Stadyumu'nda ise "Eliptik Parabolit" ve "Tek Yaygılı Hiperbolit" mimari şekiller kullanılmıştır.

Fransa’daki Chartres Katedrali dönemin “gizli geometri” (secret geometry) ya da “kutsal geometri” (sacred geometry) olarak adlandırılan ilkelerine göre yapılmıştır.

ÜÇGENLER

Doğrusal olmayan 3 noktanın ikişer ikişer birleştirilmesiyle elde edilen doğru parçalarının birleşimine üçgen denir.

Üçgen ile üçgenin iç noktasının birleşimine üçgensel bölge denir.
           
            KENARLARINA GÖRE ÜÇGENLER
    1-) EŞKENAR ÜÇGEN
 Üç kenarının uzunlukları eşit olan üçgene eşkenar üçgen denir.
   2-) İKİZKENAR ÜÇGEN
 İki kenarının uzunluğu eşit olan üçgenlere ikizkenar üçgen denir.
  3-) ÇEŞİTKENAR ÜÇGEN
 Bütün kenar uzunlukları farklı olan üçgene çeşitkenar üçgen denir.
Ayrıca bir üçgenin kenar uzunluklarının toplamı üçgenin çevresine eşittir.
         AÇILARINA GÖRE ÜÇGENLER
 1-) Dar Açılı Üçgen
 Üç açısı da  dar açılı olan üçgene dar açılı üçgen denir.
 2-) DİK AÇILI ÜÇGEN
 Bir açısı 900 olan üçgene dik açılı üçgen denir.
 3-) geniş açılı üçgen
 Bir açısının ölçüsü 900 den büyük olan üçgene geniş açılı üçgen denir.

            ÜÇGENİN TEMEL ELEMANLARI

   ABC üçgenin temel elemanları uzunluklar ve açılardır.

YÜKSEKLİK
    
Bir üçgende bir köşeden karşı kenara çizilen dik doğru parçasına  o kenara ait yükseklik denir. Yukarda  C kenarına ait yükseklik verilmiştir. Bu yükseklik hc ile gösterilir. Aynı şekilde A ve B kenarına ait yüksekliklerde çizilebilir.
              ÜÇGENDE AÇIORTAY
   Bir üçgende bir açıyı iki eş açıya ayıran ışına açının açıortayı denir. A açısından  [BC]       kenarına çizilen açıortay nA  ile gösterilir.
    olup  
 | AD| = nA
 | BE |= nB
 | CF |= nC   dir.
 
            ÜÇGENDE KENARORTAY
  Üçgende bir kenarın orta noktasını karşı köşeye birleştiren doğru parçasına kenarortay denir.
    

                     ÜÇGENDE AÇILAR

Bir üçgende iç açılar toplamı 1800 dir. Dış açılar toplamı ise 3600 dir.
i-)

Yukarıdaki şekilde görüldüğü gibi iki iç açının toplamı diğer köşenin dış açısına eşittir.

ii-)

         ÜÇGENDE AÇI KENAR BAĞINTILARI
  Bir üçgenin çizilebilmesi için bir kenarının uzunluğu diğer iki kenar uzunluklarının farkı le toplamı arasında olmalıdır.

Kenar uzunlukları yukarıdaki gibi   a,b,c olan bir üçgende
  i-) | b-c | < a < b+c
 ii-) | a-c | < b < a+c
iii-) | a-b | < c < a+b
 Ayrıca dikkat edilmesi gereken  bir husus ta üçgende açılardan hangi daha büyükse o açının baktığı kenar diğer kenarlardan daha büyüktür.
            ÜÇGENDE UZUNLUK
  Pisagor Bağıntısı
  Bir dik üçgende dik kenarlar uzunluklarının  kareleri toplamı  diğer kenar uzunluğunun karesi toplamına eşittir.

 a-) ( 3-4-5 ) Üçgeni
Bu tip üçgenler dik üçgen olup  dik kenarlar 3 ve 4 olup hipotenüs 5 tir. Bu tip üçgenleri en genel şekilde  ( 3k,4k,5k )  verilir. Yani ( 9,12,15 ) ve ( 15,20,25 ) üçgenleri bu kalıpta dik üçgenlerdir.
 
 b-) ( 5,12,13 ) Üçgeni
Bu tip üçgenlerde dik üçgen olup dik kenarlar 5 ve 12 olup hipotenüs 13 tür. Bu tip üçgenler de  ( 5k,12k,13k) formatında verilir.
c-) ( 8,15,17 ) Üçgeni
 Bu tip üçgenler dik üçgen olup dik kenarlar 8 ve 15 olup hipotenüs 17 dir. Genel olarak
( 8k,15k,17k ) formatında verilir.


30,60,90  DİK ÜÇGENİ
 Bir eşkenar üçgende yükseklik çizilmesiyle oluşan üçgen tipidir.
         

ÖKLİT  BAĞINTILARI
 olmak üzere
1-) h2= p.k
2-)    c2= a.p
3-)    b2= k.p
4-)     bağıntıları mevcuttur.
DİKDÖRTGEN - DİKDÖRTGENLER
1. Dikdörtgen
Karşılıklı kenar uzunlukları eşit ve bütün açıları 90° olan dörtgene dikdörtgen denir.

  • Dikdörtgen paralelkenarın açıları 90° olan halidir. Bu nedenle paralelkenarın sahip olduğu bütün özelliklere sahiptir.

2. Dikdörtgenin Alanı ve Çevresi
a. Dikdörtgenin alanı farklı iki kenarının çarpımına eşittir.
A(ABCD) = a . b
b. Bütün dörtgenlerde olduğu gibi dikdörtgende deköşegen uzunlukları biliniyor ise alanı,

c. Dikdörtgenin çevresi
3. Dikdörtgenin Köşegen Özellikleri
a. Dikdörtgende köşegen uzunlukları eşittir. Köşegenler birbirlerini ortalar.
|AC| = |BD||AE| = |EC| = |DE| = |EB|

b. Kenar uzunlukları a ve b olan ABCD dikdörtgeninde köşegen uzunlukları
|AC| = |BD| = Öa2 + b2
c. ABCD dikdörtgeninin içinde alınan bir P noktası dikdörtgenin köşeleri ile birleştirilirse
|AP|2 + |PC|2 = |PD|2 + |PB|2

  • P noktası dikdörtgenin dışında olduğunda da aynı özellik geçerlidir.
  • KARE

1. Kare
Bütün kenar uzunlukları eşit ve bütün açıları 90° olan dörtgene kare denir.2. Karenin Alanı
Bir kenarı a olan karenin alanı
A(ABCD) = a23. Karenin Özellikleri
a. Karenin köşegenleri birbirini dik ortalar. Köşegenlerin kenarlarla yaptığı açılar 45° dir.

b. Bir kenarı a olan karenin köşegeni
|AC| = |BD| = aÖ2

  • DELTOİD

a. Deltoid Tabanları çakışık iki ikizkenar üçgenin oluşturduğu dörtgenedeltoid denir.

b. Deltoidin köşegenleri diktir.

|AC| ^ |BD|
c. Köşegenleri dik olduğundan alanı

d. ABCD deltoidinde [AC] köşegeni aynı zamanda A ve C açılarının açıortay doğrusudur.e. ABD ve BCD ikizkenar üçgenlerinin tabanını oluşturan köşegen diğer köşegen tarafından iki eşit parçaya bölünür.
f. Deltoidin farklı kenarlarının birleştiği köşelerdeki açıları eşittir.
m(ABC) = m(ADC)

 

Trigonometri

Vikipedi, özgür ansiklopedi

 
Git ve: kullan, ara

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı.

sinüs, kosinüs ve tanjant
sinüs, kosinüs ve tanjant

Düzlemsel trigonometride, iki boyutlu düzlemde (ve üçü de aynı doğru üzerinde yer almayan) üç noktayı doğru parçalarıyla ikişer ikişer birleştirerek oluşturulan düzlemsel üçgenler söz konusudur. Küresel trigonometride ise, üç boyutlu kürenin iki boyutlu olan yüzeyinde (ve üçü de aynı büyük çember üzerinde yer almayan) uç noktayı büyük çember yaylarıyla ikişer ikişer birleştirerek oluşturulan küresel üçgenler söz konusudur. Küresel trigonometri Eski Yunanda astronomiye ilişkin gereksinimleri karşılamak amacıyla ortaya çıktı ve gelişti. Küresel trigonometri aslında düzlemsel trigonometriyi de tümüyle içerir, ama düzlemsel trigonometri ancak 15. yüzyıl Avrupa'sında, topografya, ticaret ve denizciliğin gereksinimleri doğrultusunda kendi başına ve küresel trigonometriden bağımsız olarak gelişmiştir. Küresel trigonometri, düzlemsel geometriden daha önce ortaya çıkıp gelişmiş olmakla birlikte, ancak düzlemsel geometrinin temel ilkelerinin bilinmesiyle daha iyi anlaşılabilir.

Düzlemsel trigonometri aslında her tür düzlemsel üçgen için geçerli olmakla birlikte, bağıntılar genellikle dik üçgenlerde tanımlanır. Açılarından biri (x) 0° ile 90° arasında olan bir dik üçgenin (düzlemsel bir üçgende iç açıların toplamı 180° olduğu için) öteki açısı 90-x'a eşittir. Böyle bir üçgende dik açının karşısındaki kenar |OD| hipotenüs, O 'nun karşısındaki kenar |CD| karşı kenar, |OC| 'ya komşu olan kenar ise komşu kenar olarak adlandırılır. Bu kenarlar birbirlerine ikişer ikişer altı farklı biçimde oranlanabilir, böylece A açısının trigonometrik fonksiyonları tanımlanmış olur.

Konu başlıkları

  • 1 Açı
  • 2 Yönlü Yaylar
  • 3 Birim(Trigonometrik) Çember
  • 4 Açı Ölçü Birimleri
  • 5 Sarma Fonksiyonu
  • 6 Bir Açının Esas Ölçüsü
  • 7 Trigonometrik Fonksiyonlar
  • 8 Dik Üçgenlerde Bazı Açıların Trigonometrik Oranları
  • 9 Trigonometrinin kullanım alanları

Açı

Şekil: 1.1

boq gibi bir konudur EBEMYOK BYENES Başlangıç noktaları aynı olan iki ışının birleşimine açı denir.

[OA ve [OB ışınlarına açının kenarları, O noktasına açının köşesi denir.

Yönlü Yaylar
Çember üzerinde açı pozitif yönlü ise yay da pozitif yönlü, açı negatif ise yay da negatif yönlü olarak alınır.

Birim(Trigonometrik) Çember

Şekil: 1.2

Merkezi orijin ve yarıçarpı 1 birim olan çembere birim çember veya trigonometrik çember denir. Birim çemberin denklemi

  •  x^2 + y^2 =1

şeklindedir.

Birim çemberde verilen bir  P(x,y) noktası;

  • 1.bölgede ise  x > 0 , y > 0
  • 2.bölgede ise  x < 0 , y > 0
  • 3.bölgede ise  x < 0 , y < 0
  • 4.bölgede ise  x > 0 , y < 0 dır.

 

Açı Ölçü Birimleri

  • Açıyı ölçmek demek, açının kolları arasındaki açıklığı belirlemek demektir.

Açı ölçü birimleri üç tanedir.

DERECE: Bir tam çember yayının 360 eş parçaya bölünmesiyle elde edilen her bir yayı gören merkez açının ölçüsüne 1 derece denir.

GRAD: Bir tam çember yayının 400 eşit parçaya bölünmesiyle elde edilen her bir yayı gören merkez açının ölçüsüne 1 grad denir.

RADYAN: Bir çemberde yarıçap uzunluğundaki yayı gören merkez açının ölçüsüne 1 radyan denir.Çember yayının ölçüsü  2pi radyandır ve radyanla çarpılarak bulunur.

Sarma Fonksiyonu

Reel sayılar kümesinden birim çember üzerindeki noktalara tanımlanan fonksiyona sarma fonksiyonu denir.

Sarma fonksiyonunu s ile, birim çemberi de C ile gösterirsek;

  •  s:R --> C yazilabilir.
  •  s(x)=P oldugunda  s(x+ 2k pi ) = P olur.

Bir Açının Esas Ölçüsü

a) Verilen açı  0 < x < 360 ya da  x = 0 , x = 360 ise;

 x in esas ölçüsü kendisidir.

b) Verilen açı  x > 360 ya da  x = 360 ise;

 x in 360 a bölümünden kalan esas ölçüyü verir.

c) Verilen açı  x < 0 ise;

 -x 360 a bölümünden kalan  y olsun.

O halde,  x in esas ölçüsü  360 - y dır.

Trigonometrik Fonksiyonlar

olarak adlandırılır.

Bu tanımlardan görülebileceği gibi, bu fonksiyonlar arasında,

tan x = frac{sin x}{cos x} , cot x = frac{1}{tan x} = frac{cos x}{sin x}
sec x = frac{1}{cos x} , csc x = frac{1}{sin x}
{cos^2 x} + {sin^2 x} = 1 (Pisagor teoremi)

ilişkileri vardır.

Dik Üçgenlerde Bazı Açıların Trigonometrik Oranları

 30 =pi /6  45 =pi /4   60 =pi/3
sin x  0  1 / 2 sqrt 2 / 2 sqrt 3 / 2  1  0  -1
cos x  1 sqrt 3 / 2 sqrt 2 / 2  1 / 2  0  -1  0
tan x  0  1 /sqrt 3  1 sqrt 3  Sonsuz  0  Sonsuz
cot x  Sonsuz sqrt 3  1  1 /sqrt 3  0  Sonsuz  0

Trigonometrinin kullanım alanları

Trigonometri birçok fen biliminde, matematiğin diğer alanlarında ve çeşitli sanatlarda yaygın bir biçimde kullanılmaktadır. Trigonometriyi kullanan bazı dallar şunlardır:

Akustik, Mimari, Astronomi (ve dolayısıyla navigasyon), biyoloji, kartografi (harita bilimi), kimya, inşaat mühendisliği, bilgisayar grafikleri, jeofizik, kristalografi, ekonomi (özellikle de finansal pazarların analizinde), elektrik mühendisliği, elektronik, jeodezi, makine mühendisliği, tıbbi görüntüleme (ültrason gibi), meteoroloji, müzik kuramı, sayı kuramı (ve dolayısıyla kriptografi), oşinografi (okyanus bilimi), farmakoloji (eczacılık), optik, fonetik, olasılık kuramı, psikoloji, sismoloji...

Trigonometri yukarıda örneklendiği gibi birçok farklı alana farklı katkılarda bulunmuştur. Örneğin Pisagor kuramının isim babası Pisagor matematiksel müzik kuramına ilk katkıda bulunan isimlerdendir. Oşinografide bazı dalgaların sinüs dalgalarına benzerliği ilgili incelemelerde trigonometrinin kullanımına olanak tanımıştır. Bunun dışında Fourier serileri sayesinde trigonometrik fonksiyonlar farklı fonksiyonları temsil etmekte kullanılırlar ve bu sayede trigonometri birçok farklı dalda kullanım olanağı bulmuştur. Böylece ısı akışı ve difüzyon başta olmak üzere özellikle periyodik özellik gösteren kavramların incelendiği birçok dalda ve fenomende trigonometrik fonksiyonlar kullanılabilmiştir; akustik, radyasyon ve elektronik gibi.

KÜMELER

Küme matematikte tanımsız olarak kabul edilen kavramlarından biridir. Ancak sezgisi olarak kümenin ne ifade ettiği de anlaşılmalıdır.
Belirli ve birbirinden farklı nesnelerin küme oluşturduğunu anlarız.
Kümeler genel olarak “A,B,C…” gibi büyük harflerle gösterilir.
Elemanları dediğimiz nesneleri de küçük harflerle gösterilir. Bir “A” kümesine ait “a” elemanı “a Î A” şeklinde yazılır.

Kümelerin Gösterimi

1.Liste Yöntemi:

Kümeye ait olan elemanlari açık olarak belirtme yöntemidir.Kümeye ait olan öğeler kümenin içersine yazılarak gösterilir.

Örnek: A={ Ahmet , Ali , Mehmet , a , b , c }

2.Ortak Özellik Yöntemi:

Bir kümenin özelliklerini belirterek yazma yöntemidir. Küme ortrak özellik yöntemi ile; { x : x… koşulunu sağlar } = {x | x…. koşulunu sağlar } biçiminde gösterilir.

Örnek: A={x | x , 6’nın pozitif tam böleni ve x Î Z } kümesini liste yöntemiyle gösterelim.

A = { 1 , 2 , 3 , 6 }

3.Şema Yöntemi (Venn Şeması)

Küme öğelerinin kapalı bir şekil içersinde gösterme yöntemidir.

Örnek: A={ x : | x – 2 | £ 1 , x Î } kümesinin elemanlarini şema yöntemiyle yazalım.
| x – 2 | £ 1 A
-1 £ x – 2 £ 1
£ x £ 3
A={ 1 , 2 3 }


SONLU ve SONSUZ KÜMELER:

Tanım: Eleman sayısı sonlu olan kümeye sonlu küme,eleman sayısı sonlu olmayan kümeye sonsuzküme denir.

Örnek: A = { x : -1 £ x < 20 , x Î Z } kümesinde s(A) =21 oduğundan A kümesi sonlu kümedir.

A = { x: -2 £ x £ 4 , x Î Z } kümesinin sonlu saydia elemanı yoktu. Bu nedenle A kümesi sonsuz kümedir.

Hatırlatma
Doğal sayılar kümesi “N” ile gösterilir.
N = { 0 , 1 , 2 , … , n , … }
Tam sayılar kümesi “Z” ile gösterilir.
Z = { … , -n , … , -2 , -1 , 0 , 1 , 2 , … , n , … }
Rasyonel sayılar kümesi “Q” ile gösterilir.
Q = { a/b: a Î Z , b Î Z , b ¹ 0 }
Reel (Gerçek,Gerçel Sayılar) kümesi “R” ile gösterilir.


BOŞ KÜME:

Tanım: Elemanı olmayan kümeye BOŞ KÜME denir. f veya { } sembollerinden biriyle gösterilir.

Örnek: A = { x: x = - 1 , x Î R } kümesi boş kümedir. Çünkü karesi “-1” olan reel sayı yoktur.


UYARI:
{ f } boş küme değildir , tek elemanlı kümedir.
{ 0 } kümesi boş küme değildir.
Boş küme bir tanedir.


EŞİT KÜMELER:

Tanım: Aynı elemanlardan oluşan kümeye eşit kümeler denir. A ve B eşit kümeler ise “ A = B “ ile , A ve B eşit değilse “ A ¹ B “ ile gösterilir.

Örnek: A = { a , b , 2 } , B = { b , 2 , a }
A = B ‘ dir

DENK KÜMELER:

Tanım: Eleman sayıları eşit olan iki kümeye denk kümeler denir.

Örnek: A= { 1 , 0 , -1 } B = { a , b , c } A ¹ B dir fakat s(A) = s(B) = 3 olduğundan A ve B denk kümelerdir.


UYARI: Liste yöntemi ile yazılan bir kümede yazılış sırası değiştirğinde küme değişmez.


ALT KÜME:

Bir “A” kümesinde bulunan B
Her eleman aynı zamanda “B” kü-
mesinde eleman ise “A” kümesi “B” A
kümesinin alt kümesidir denir ve
“A Ì B “ ifadesi ile gösterilir.
“A Ì B “ ifadesi A alt küme B yada
“B” “A’yı” kapsar biçiminde okunur.
"x Î A , x Î B ise A Ì B ‘dir.
A Ì B


Örnek: A = { -1 , 2 , 3 } B = { -1 , 3 , 6 , 5 , 2 , 7 } ise
A Ì B ‘dir.

Alt Kümenin Özellikleri:
Her “ A” kümesi için F Ì A ‘dır.(Çünkü F ‘ye ait olup A ‘ ya ait olmayan eleman yoktur.
Her “A” kümesi için A Ì A ‘dır. (Her x Î A için x Î A olduğundan A Ì A ‘dır. )
A , B , C kümeleri için ( A Ì B ve B Ì C) Þ A Ì C ‘dir.
(A Ì B ve B Ì A) Û A = B ‘ dir.




ÖZALT KÜME:

Tanım: Bir “A” kümesinin kendisi dışındaki alt kümesine “A” kümesinin özalt kümesi denir.

Örnek: A = { 2 , 5 } kümesinin özalt kümeler F , {2} , {5} ‘ dir.

KUVVET KÜMESİ:

Tanım: Bir “A” kümesinin bütün alt kümelerinin kümesine A ‘nın kuvvet kümesi denir ve “P(A)” ile gösterilir.

Örnek: A = { a , x } ise P(A) = { F,{0},{x},{a,x} } ‘dır.

ALT ve ÖZALT KÜME SAYISI:

Tanım: Genel olarak s(A)=n olan “A” kümesinin alt kümelerinin sayısı 2 ve özalt kümelerinin 2 – 1 ‘dir.

Örnek: A = { 1 , 2 , 3 } ise bu kümenin alt küme sayısı 2 ‘dir.
S(A) = 3 oldugundan 2 = 8’dir. A kümesinin 8 alt kümesi 7 özalt kümesi vardir.

N ELEMANLI BİR A KÜMESİNİN (r £ n) r ELEMANLI ALT KÜME SAYISI:

N öğeli bir kümenin r_öğeli (r £ n) alt kümelerinin sayısı
( ) = ‘dir. (yani n’in r’li kombinasyonu denir.)

Örnek: A = { a , b , c , d } kümesini 2 elemanlı alt kümelerinin
sayısını bulalım. ( ) =



KÜMELERDE İŞLEMLER

1.Kümelerin Bielişimi:
Tanım: “A ve B” kümelerinin bileşimi A È B = { x : x Î A veya x Î B } ‘dir. “A bileşim B” kümesi “A ile B” nin tüm elemanlarından oluşur.

A B B A B

A



A È B A È B A È B


Örnek: A = { 1 , 2 , 3 , 4 } ve B = { 2 , 4 , 7 , 9 } ise
A È B = { 1 , 3 , 4 , 2 , 7 , 9 } ‘dur.

Birleşim Özellikleri
Tek kuvvet özelliği:
Her A kümesi için A È A = A ‘dır
Her A ve B kümesi için A Ì B ‘ise A È B = B ‘ dir.
Değişme özelliği:
Her A ve B kümeleri için A È B = B È A ‘dir.
Birleşme özelliği:
Her A , B ve C kümeleri için (AÈB) È C = A È (B È C) ‘dir.
s(A ÈB) = s(A) + s(B) – s(A ÇB) ‘ dir.

2.Kümelerde Kesişim:
Tanım: “A ve B” kümelerinin kesişimi A Ç B ={x : x Î A ve x Î B} ’dir. “A kesişim B” kümesi hem “A” hemde “B” kümesine ait elemanlardan olusmaktadır.


A B






A Ç B

Örnek: A = { 1 , a , 2 , b , 3 } ve B = { 1 , 6 , 7 , b } ise
A Ç B = { 1 , b } ‘ dir.





Kesişim İşleminin Özellikler:
Tek kuvvet özelliği:
Her A kümesi için A Ç A = A ‘dır
Her A ve B kümesi için A Ì B ise A Ç B = A ‘dır.
Değişme özelliği:
Her A ve B kümeleri için A Ç B = B Ç A ‘dır.
Birleşme özelliği:
(A Ç B) Ç C = A ( B Ç C) ‘ dir.

3.Ayrık Kümeler:
Tanım: A ve B kümeleri için A Ç B = F ise bu kümeler atrık kümelerdir.

Örnek: A = { 1 , 5 , 6 } ve B = { 2 , b , y } ise
A Ç B = F oldugu üçün A ve B kümeleri ayrık kümelerdir.

4.Dağılma Özelliği:

a.)Birleşimin Kesişim Üzerinde Dağılma Özelliği:
Her A , B ve C elemanları için
A È ( B Ç C ) = ( A È B ) Ç ( A È C ) ‘ dir


Örnek: A = { 1 , 2 , 3 } , B = { 2 , 3 , 4 } ve C = { 3 , 4 , 5 } ‘ ise
A È ( B Ç C ) = A È { 3 , 4 }
= { 1 , 2 , 3 , 4 }

( A È B ) Ç ( A È C ) = { 1 , 2 , 3 , 4 } Ç { 1 , 2 , 3 , 4 }
= { 1 , 2 , 3 ,4 }

{ 1 , 2 , 3 , 4 } = { 1 , 2 , 3 , 4 } = AÈ(BÇC) = ( A È B ) Ç ( A È C )


b.)Kesişimin Birleşim Üzerinde Dağılma Özelliği
Her A , B ve C kümeleri için
A Ç ( B È C ) = ( A Ç B ) È ( A Ç C ) ‘ dir.

Örnek: A = { a , b , c } , B = { c , d } ve C = { d , e } ise
A Ç ( B È C ) = A Ç { c , d , e }
= { c }
( A Ç B ) È ( A Ç C ) = { c } Ç F
= { c }

{ c } = { c } = A Ç ( B È C ) = ( A Ç B ) È ( A Ç C )
5.Birleşimin Eleman Sayısı:
A ve B kümeleri için s( A È B ) = s( A ) + s( B ) – s( A Ç B ) ‘ dir.

Örnek: s( A ) = 5 , s( B ) = 10 ve s (A Ç B ) = 2 ise
s( A È B ) = 5 + 10 – 2
= 13

6.Evrensel Küme:
Üzerinde işlem yapılan bütün kümeleri kapsayan kümeye evrensel küme denir ve E ile gösterilir.


E
A
B C A Ì E , B Ì E , C Ì E
Ve ( B È C ) Ì E ‘ dir.



7.Tümleme:
Bir A kümesine ait olmayan fakat evrensel kümeye ait olan tüm elemanlardan oluşan kümeye A ‘ kümesinin tümleyeni denir.

E







A kümesinin tümleyini A¢ = A = A sembollerinden biriyle gösterilir.

Örnek: E = { a , b , c , d , e } ve A = { a , b , c } ise
A¢ = { d , e } ‘ dir.

Tümleme İşleminin Özellikleri:
A Ç A¢ = F
A È A¢ = E
( A¢ ) ¢ = A
A Ì B ise B¢ Ì A¢ ‘dir.
( A È B ) ¢ = A¢ Ç B¢ (De Morgon Kuralı)
(A Ç B ) ¢ = A¢ È B¢ ( De Morgon Kuralı)
s(A) + s(A) ¢ = s(E)
E¢ = F
F¢ = E

8.Fark Kümesi:
A ve B kümeleri için A B = { x : x Î A ve x Ï B } kümesine A fark B kümesi denir.

A B


A B A Ç B B A




Örnek: A = { a , b , c , d } ve B = { a , d , e , f , b } ise
A B = { c } B A = { e , f } ‘ dir.

Fark Kümesinin Özellikleri:
A ¹ B ise A B ¹ B A
E A¢ = A
A B = A Ç B¢
A Ç B = F ise A B = A


9.Simetrik Fark:
A ve B kümeleri için A D B = ( A B ) È ( B A ) kümesine A ve B nin simetrik fark kümesi denir.

Örnek: A = { a , {b} , c , {d,e} } ve B = { {a} , {b} , c , d } ise
A D B = { a , {a} , d , {d,e} } ’ dir.

Açık Önermeler ve Niceliyiciler:

Açık Önerme:
Tanım: İçinde en az bir değişken bulunan ve bu değişkenlere verilen değerlere , doğruluğu veya yanlışlığı hakkında kesin karar verilebilen önermelere açık önerme denir.

Örnek: P(x)= “x tamsayıdır” açık önermesinde x yerine 2 yazdığımızda önerme doğru olur. P(2) º 1 ‘dir. P(x) önermesinde x yerine ½ yadığımızda önerme yanlış olur. P(½) = 0 ‘dır.

Tanım: Biraçık önermeyi doğru yapan elemanlardan oluşan kümeye “Açık Önermenin Doğruluk Kümesi” yada “Çözüm kümesi” denir.

Örnek: P(x) = 3x+1 < 13 açık önermesinin doğal sayılarda doğruluk
kümesini bulalım.
3x+1 < 13 Þ 3x < 12 Þ x < 4 ‘ tür.
P(x) önermesi x = 0 , x = 1 , x = 2 , x = 3 için doğru çözüm
kümesidir.
Ç = { 0 , 1 , 2 , 3 } ‘dür.

Niceliyiciler:
Günlük yaşantımızda kullandığımız “bazı , her” gibi sözcüklerle yaptığımız bir çok önerme vardır. “Bazı aylar 30 gündür” önermesinde sözcüğü “En az bir ay 30 gündür” anlamındadır. “ Her kuş uçar ” önermesinde her bütün anlamındadır.

Varlıksal Niceliyiciler:
“Bazı” ile ifade edilen niceliyeciye varlıksal niceliyici denir.Bazı sözcüğü “En az bir” anlamına gelir ve bazı ile yapılan önermenin doğruluğu için en az bir doğru örnek yeter. Matematikte bazı sözcüğünün yerine “ $ “ sembolü kullanılır.


Örnek: “ Bazı sayılar 3’ e tam bölünür önermesi 3’e gölünen 3 , 6 …
gibi sayılar olduğundan doğrudur.

Evrensel Niceliyiciler:
“Her” ifade edilen niceliyiciye “Evrensel Niceleyici” denir.Her sözcüğü bütün anlamına gelir ve “her” ile yapılan önermenin doğru olmadığını göstermek için bir tek yanlış örnek yeter.
Matematikte “her” sözcüğünün yerine “"” sembolü kullanılır.

Örnek: P(x) = Her x Î R , x > 0 ‘dır. Önermesi x=0 için doğru
değildir. O halde önerme yanlıştır.

“" ve $ ” İle Yapılan Önermelerin Olumsuzu:
Bir önerme doğru iken önermenin olumsuzu yanlıştır.
1. $x Î A , P(x) ‘ tir önermesinin olumsuzu
[ $x Î A , P(x) ]¢ ile göserilir ve

[ $x Î A , P(x) ]¢ º [ "x Î A , P(x) değilidir.]


2. ["x Îr , x > -1] ‘dir önermesinin olumsuzu ["x Îr , x > -1]¢ ile gösterilir.
["x Î R , x > -1]¢ º [ $x Î R , x < -1 ‘dir]


Sembol Olumsuzu(Değili)
"…………………………………$
$…………………………………"
³…………………………………<
=…………………………………¹
£………………………………….>

AĞIRLIK VE ÖLÇÜ BİRİMLERİ

 
METRİK SİSTEM
 
ÖNEKİ   SEMBOLÜ  DEĞERİ           ÖNEKİ   SEMBOLÜ  DEĞERİ
 
mega-       M    x 1,000,000                   desi-          d      x 1/10
kilo-            k    x 1,000                        santi-         c      x 1/100
heKto         h    x 100                            mili-          m      x 1/1,000
deka-         da   x 10                             mikro-        u      x 1/1,000,000
 

ÖLÇÜMLERİN TEMEL  BİRİMLERİ

Uzunluk.....metre                        

Hacim  ......litre                            

Ağırlık  ......gram                         

Uluslar arası birim ….. International units (IU veya U)               

Tam Kan ….1 ünite = 500 ml           

Eritrosit….   1 ünite = 250-400 ml

 

mEq .. (Miliekivalan=Miliequivalent):  Ekivalantın binde biridir. Sıvı içindeki elektrolit (ilaçlarda etken madde) miktarını belirtir.  

1 Eq .. (Equivalent=ekivalan): Bir mol Hidrojen iyonu ile reaksiyona giren herhangi bir maddenin “mg ya da  mM”cinsinden miktarıdır.

 

 

UZUNLUK BİRİMLERİ

1 Işık Yılı             = 9.46 X 10 Kilometre

1 Kilometre (km)  = 1.000 Metre

1 Metre (m)          = 100 Santimetre (cm)

1 Metre (m)          = 1,000 Milimetre (mm)

1 Mikron (m)         = 1.000 Milimikron

1 Milimikron (mm) = 10 Angström (A)

 

HACİM BİRİMLERİ

1 megalitre    = 1.000 kilolitre

1 kilolitre        = 1.000 litre

1 litre (l)         = 1.000 mililitre

1 mililitre (ml) = 1.000 mikrolitre(ml)

 

AĞIRLIK BİRİMLERİ

1 ton                 = 1.000 kilogram           

1 kilogram (kg) = 1.000 gram            

1 gram (gm)      = 1.000 miligram           

1 miligram (mg)= 1.000 mikrogram      

 

BİRİMLER ARASINDAKİ GENEL İLİŞKİLER

25°C deki 1 gram(1 gr) su = 1 mililitre (1 ml) = 1 santimetreküp (1 cm3)

 

DEĞİŞİK ÖLÇÜ BİRİMLERİNİN BİRBİRİNE ÇEVRİLMESİ

1 inch(inç) = 2.54 cm (santimetre)

1 ounce (ons, sıvı için) = 29.58 (30) mililitre = 1 oz

1 metre = 1.0936 yard

1 kilogram = 2.2 pound

1 litre = 1.0567 quart

1 metre küp = 1.3080 yard küp

1 hektar = 2.4711 dönüm

10,000 metre = 1 hektar

1.609 kilometre = 1 mil

1 lb(libre) = 454.5454 gram

1 grain (gr) = 65 mg  (60 mg = narkotikler için)

 

1 yemek kaşığı = 15 ml = 1/2 ons

1 tatlı kaşığı = 5 ml

1 pint = 473 ml

1 quart = 946 ml

 

ISI ÖLÇÜM BİRİMLERİNİN BİRBİRİNE DÖNÜŞTÜRÜLMESİ                        

 

= 5/9 (F - 32)               .

= C°x 9/5 + 32                      

(K = Kelvin)  

98.6°F = 37°C = 310 K                  

32°F    = 0°  C = 273 K                    

 

BASINÇ BİRİMLERİ

1 mm Hg = 1 Torr

1 Atmosfer basıncı = 760 mm Hg.

1 Atmosfer basıncı = 14.696 lbs/sq (libre/square)

 

1 mm Hg = 13.6 mm H20 = 1.36 cm H2

Deniz_mx Çevrimiçi  

 
 
Bugün 1 ziyaretçi (1 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol